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1 Introduction

In this report we will first, present the result from representation theory known as Schur
duality and second, discuss its applications to quantum information theory. The original
motivation (of the author of this review) for studying this result was to understand the
unitaries that commute with qudit permutations (see Section 4.1). However, in the quantum
information research community the main reason for interest in Schur duality is the fact that
it can be used to accomplish many information theoretic tasks (see Section 4.2). The main
reference for this survey is Chapter 5 of Aram Harrow’s thesis [1].

2 Representation theory background

A representation of a group G is a pair (φ,Cn), where φ : G → GL(n,C) is a homomor-
phism and GL(n,C) is the set of invertible n × n complex matrices. We refer to Cn as the
representation space of φ and to n as its dimension, denoted by dimφ.

Let (φ1,Cn1) and (φ2,Cn2) be representations of a group G. Then we can obtain another
two representations of G by taking their direct sum (φ1 ⊕ φ2,Cn1+n2) and tensor product
(φ1 ⊗ φ2,Cn1n2), given by

φ1 ⊕ φ2(g) = φ1(g)⊕ φ2(g) φ1 ⊗ φ2(g) = φ1(g)⊗ φ2(g) ∀g ∈ G

We say that (φ,Cn) is irreducible if it cannot be decomposed into a direct sum of at least
two other representations. With this definition we see that all 1-dimensional representations
are irreducible. It can also be shown that any representation of a finite group G in some
basis can be expressed as a direct sum of irreducible representations of G. Another impor-
tant result known as Schur’s lemma says that if (φ1,Cn1) and (φ2,Cn2) are two irreducible
representations of G and M is a dim(φ1) × dim(φ2) matrix satisfying φ1(g)M = Mφ2(g)
for all g ∈ G, then either M = 0 or M = cI, for some c ∈ C. For more details on basic
representation theory consult [3].

3 Schur duality

Consider the following two representations
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1.
(
Q,
(
Cd
)⊗n)

of U(d), where Q(U) |i1i2 . . . in〉 = U |i1〉U |i2〉 . . . U |in〉 ∀U ∈ U(d)

2.
(
P,
(
Cd
)⊗n)

of Sn, where P(π) |i1i2 . . . in〉 =
∣∣iπ−1(1)

〉 ∣∣iπ−1(2)

〉
. . .
∣∣iπ−1(n)

〉
∀π ∈ Sn

Since Q and P commute, we can define representation
(
QP,

(
Cd
)⊗n)

of U(d)× Sn as

QP(U, π) := Q(U)P(π) = P(π)Q(U) ∀(U, π) ∈ U(d)× Sn

Theorem 1. (Schur duality) There exist a basis, known as Schur basis, in which represen-

tation
(
QP,

(
Cd
)⊗n)

of U(d) × Sn decomposes into irreducible representations1 qλ and pλ

of U(d) and Sn respectively:

QP(U, π) ∼=
⊕

λ∈Par(n,d)

qλ(U)⊗ pλ(π) (1)

We use Par(n, d) to denote the set of partitions of n into d parts. Note that partitions are
order independent, i.e., (2, 0) and (0, 2) are in fact the same partition.

In order to prove the above theorem, we first observe that algebras generated by P and
Q centralize each other. Then we can apply double commutant theorem to get expression (1)
only with unspecified range of λ. In order to specify the range, we find a correspondence
between irreducible representations of Sn and Ud and partitions Par(n, d). This was only a
very rough outline, for the complete proof (and also double commutant theorem) see [4].

We call the unitary transformation performing the basis change from standard basis
to Schur basis, Schur transform and denote by Usch. It has been shown in [2] that Schur
transform can be implemented efficiently on a quantum computer. This gives us efficient
algorithms for tasks considered in Section 4.2.

4 Applications

4.1 Unitaries commuting with qudit permutations

Note that Pπ = QP(I, π), where Pπ ∈ U(dn) permutes qudits according to π. Now we apply
Schur duality to get

Pπ = QP(I, π) ∼=
⊕

λ∈Par(n,d)

qλ(I)⊗ pλ(π) =
⊕

λ∈Par(n,d)

Idim(qλ) ⊗ pλ(π) (2)

In the last equality we use the fact that evaluating any representation at group identity gives
identity matrix. Equation (2) shows that permutation matrices Pπ are block diagonalised in
Schur basis. Consider family of unitaries given by

F :=
⊕

λ∈Par(n,d)

U (dim(qλ))⊗ Idim(pλ) (3)

1More precisely, for U(d) there is an additional constraint that the irreducible representations must be
polynomial, i.e., the matrix entries of qλ(U) are polynomial functions of Uij .
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in Schur basis. Due to the decomposition of qudit permutation matrices in Schur basis
given in equation (2), it is obvious that unitaries of the form (3) commute with all qudit
permutations. On the other hand, since representations pλ in equation (2) are irreducible
via Schur’s lemma we get that any unitary that commutes with all qudit permutation has to
have identity matrix in the blocks corresponding to pλ. This shows that F is exactly the set
of unitaries commuting with qudit permutations. If we want a description of F in standard
basis we have to conjugate each matrix with Schur transform.

4.2 Applications to quantum information theory

In classical information theory method of types can be used to perform such task as esti-
mating probability distribution, randomness concentration and data compression (see [5]).
It has been shown that Schur basis can be used to generalize classical method of types,
thus enabling us to perform quantum analogues of the previously mentioned tasks. In fact
Schur basis is a natural choice if we want to study systems with permutation symmetry. For
example, in case of n copies of mixed state ρ ∈ L(d) we have:

Uschρ
⊗nU †sch =

⊕
λ∈Par(n,d)

qλ(ρ)⊗ Idim(pλ) (4)

Schur transform can be used to perform the following tasks:

• Estimation of the spectrum of an unknown mixed state ρ ∈ L(Cd) from ρ⊗n

If we apply Schur transform to ρ⊗n and measure the label λ ∈ Par(n, d), then a good
estimate of the spectrum of ρ is given by (λ1/n, . . . , λd/n).

• Universal distortion-free entanglement concentration using only local operations
Alice and Bob share n copies of some unknown partially entangled state |ψ〉AB ∈ C2d

and the task is to produce maximally entangled states using only local operations.
If Alice and Bob apply Schur transform to their n halves of |ψ〉, measure the label
λ ∈ Par(n, d), discard representation the space of qλ, then they are left with perfectly
entangled state in the representation space of pλ.

• Encoding into decoherence free subsystems
If we know that noise will act identically on each of the n systems, information can be
protected from decoherence by encoding it into subspace corresponding to irreducible
representations of Sn, since the noise acts trivially in this subspace.

Another applications of Schur transform include communication without shared reference
frame and universal compression of quantum data.
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